Back to Search Start Over

Equivalent Impedance Models for Electrochemical Nanosensor-Based Integrated System Design

Authors :
Zhongzheng Wang
Aidan Murphy
Alan O’Riordan
Ivan O’Connell
Source :
Sensors, Vol 21, Iss 9, p 3259 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Models of electrochemical sensors play a critical role for electronic engineers in designing electrochemical nanosensor-based integrated systems and are also widely used in analyzing chemical reactions to model the current, electrical potential, and impedance occurring at the surface of an electrode. However, the use of jargon and the different perspectives of scientists and electronic engineers often result in different viewpoints on principles of electrochemical models, which can impede the effective development of sensor technology. This paper is aimed to fill the knowledge gap between electronic engineers and scientists by providing a review and an analysis of electrochemical models. First, a brief review of the electrochemical sensor mechanism from a scientist’s perspective is presented. Then a general model, which reflects a more realistic situation of nanosensors is proposed from an electronic engineer point of view and a comparison between the Randles Model is given with its application in electrochemical impedance spectroscopy and general sensor design. Finally, with the help of the proposed equivalent model, a cohesive explanation of the scan rate of cyclic voltammetry is discussed. The information of this paper can contribute to enriching the knowledge of electrochemical sensor models for scientists and is also able to guide the electronic engineer on designing next-generation sensor layouts.

Details

Language :
English
ISSN :
14248220
Volume :
21
Issue :
9
Database :
Directory of Open Access Journals
Journal :
Sensors
Publication Type :
Academic Journal
Accession number :
edsdoj.93698c2f286c4f1ead58d8cf14a61cba
Document Type :
article
Full Text :
https://doi.org/10.3390/s21093259