Back to Search Start Over

Ultra high speed SPECT bone imaging enabled by a deep learning enhancement method: a proof of concept

Authors :
Boyang Pan
Na Qi
Qingyuan Meng
Jiachen Wang
Siyue Peng
Chengxiao Qi
Nan-Jie Gong
Jun Zhao
Source :
EJNMMI Physics, Vol 9, Iss 1, Pp 1-15 (2022)
Publication Year :
2022
Publisher :
SpringerOpen, 2022.

Abstract

Abstract Background To generate high-quality bone scan SPECT images from only 1/7 scan time SPECT images using deep learning-based enhancement method. Materials and methods Normal-dose (925–1110 MBq) clinical technetium 99 m-methyl diphosphonate (99mTc-MDP) SPECT/CT images and corresponding SPECT/CT images with 1/7 scan time from 20 adult patients with bone disease and a phantom were collected to develop a lesion-attention weighted U2-Net (Qin et al. in Pattern Recognit 106:107404, 2020), which produces high-quality SPECT images from fast SPECT/CT images. The quality of synthesized SPECT images from different deep learning models was compared using PSNR and SSIM. Clinic evaluation on 5-point Likert scale (5 = excellent) was performed by two experienced nuclear physicians. Average score and Wilcoxon test were constructed to assess the image quality of 1/7 SPECT, DL-enhanced SPECT and the standard SPECT. SUVmax, SUVmean, SSIM and PSNR from each detectable sphere filled with imaging agent were measured and compared for different images. Results U2-Net-based model reached the best PSNR (40.8) and SSIM (0.788) performance compared with other advanced deep learning methods. The clinic evaluation showed the quality of the synthesized SPECT images is much higher than that of fast SPECT images (P 0.999), similar detail of 99mTc-MDP (P = 0.125) and the same diagnostic confidence (P = 0.1875). 4, 5 and 6 spheres could be distinguished on 1/7 SPECT, DL-enhanced SPECT and the standard SPECT, respectively. The DL-enhanced phantom image outperformed 1/7 SPECT in SUVmax, SUVmean, SSIM and PSNR in quantitative assessment. Conclusions Our proposed method can yield significant image quality improvement in the noise level, details of anatomical structure and SUV accuracy, which enabled applications of ultra fast SPECT bone imaging in real clinic settings.

Details

Language :
English
ISSN :
21977364
Volume :
9
Issue :
1
Database :
Directory of Open Access Journals
Journal :
EJNMMI Physics
Publication Type :
Academic Journal
Accession number :
edsdoj.934d1084dd4447a4ad6337acf8fc3de1
Document Type :
article
Full Text :
https://doi.org/10.1186/s40658-022-00472-0