Back to Search Start Over

Advances in wildlife abundance estimation using pedigree reconstruction

Authors :
Elias Rosenblatt
Scott Creel
Katherina Gieder
James Murdoch
Therese Donovan
Source :
Ecology and Evolution, Vol 13, Iss 10, Pp n/a-n/a (2023)
Publication Year :
2023
Publisher :
Wiley, 2023.

Abstract

Abstract The conservation and management of wildlife populations, particularly for threatened and endangered species are greatly aided with abundance, growth rate, and density measures. Traditional methods of estimating abundance and related metrics represent trade‐offs in effort and precision of estimates. Pedigree reconstruction is an emerging, attractive alternate approach because its use of one‐time, noninvasive sampling of individuals to infer the existence of unsampled individuals. However, advances in pedigree reconstruction could improve its utility, including forming a measure of precision for the method, establishing required spatial sampling effort for accurate estimates, ascertaining the spatial extent of abundance estimates derived from pedigree reconstruction, and assessing how population density affects the estimator's performance. Using established relationships for a stochastic, spatially explicit simulated moose (Alces americanus) population, pedigree reconstruction provided accurate estimates of the adult moose population size and trend. Novel bootstrapped confidence intervals performed as expected with intensive sampling but underperformed with moderate sampling efforts that could produce abundance estimates with low bias. Adult population estimates more closely reflected the total number of adults in the extant population, rather than number of adults inhabiting the area where sampling occurred. Increasing sampling effort, measured as the proportion of individuals sampled and as the proportion of a hypothetical study area, yielded similar asymptotic patterns over time. Simulations indicated a positive relationship between animal density and sampling effort required for unbiased estimates. These results indicate that pedigree reconstruction can produce accurate abundance estimates and may be particularly valuable for surveying smaller areas and low‐density populations.

Details

Language :
English
ISSN :
20457758
Volume :
13
Issue :
10
Database :
Directory of Open Access Journals
Journal :
Ecology and Evolution
Publication Type :
Academic Journal
Accession number :
edsdoj.933b9033b769495db624530e11b4be81
Document Type :
article
Full Text :
https://doi.org/10.1002/ece3.10650