Back to Search Start Over

Linking resource selection to population performance spatially to identify species' habitat across broad scales: An example of greater sage‐grouse in a distinct population segment

Authors :
Megan C. Milligan
Peter S. Coates
Brianne E. Brussee
Shawn T. O'Neil
Steven R. Mathews
Shawn P. Espinosa
Katherine Miller
Daniel Skalos
Lief A. Wiechman
Steve Abele
John Boone
Kristie Boatner
Heather Stone
Michael L. Casazza
Source :
Ecology and Evolution, Vol 14, Iss 10, Pp n/a-n/a (2024)
Publication Year :
2024
Publisher :
Wiley, 2024.

Abstract

Abstract Management decisions often focus on the habitat selection of marked individuals without considering the contribution to demographic performance in selected habitats. Because habitat selection is not always adaptive, understanding the spatial relationship between habitat selection and demographic performance is critical to management decisions. Mapping both habitat selection and demographic performance for species of conservation concern can help guide population‐scale conservation efforts. We demonstrate a quantitative approach to differentiate areas supporting selection and survival at large spatial extents. As a case study, we applied this approach to greater sage‐grouse (Centrocercus urophasianus; hereafter, sage‐grouse), an indicator species for sagebrush ecosystems. We evaluated both habitat selection and survival across multiple reproductive life stages (nesting, brood‐rearing) in the Bi‐State Distinct Population Segment, a genetically distinct and geographically isolated population of sage‐grouse on the southwestern edge of the species' range. Our approach allowed us to identify both mismatches between selection and survival and trade‐offs between reproductive life stages. These findings suggest resource demands vary across time, with predation risk being a dominant driver of habitat selection during nesting and early brood‐rearing periods when chicks are smaller and flightless, whereas access to forage resources becomes more important during late brood rearing when resources become increasingly limited. Moving beyond identifying and managing habitat solely based on species occupancy or use by incorporating demographic measures allows managers to tailor actions to their specific goals; for example, protections of areas that support high selection and high survival and restoration actions focused on increasing survival in areas of high selection and low survival.

Details

Language :
English
ISSN :
20457758
Volume :
14
Issue :
10
Database :
Directory of Open Access Journals
Journal :
Ecology and Evolution
Publication Type :
Academic Journal
Accession number :
edsdoj.9315c2e6aaab43ada6bc286bd698c093
Document Type :
article
Full Text :
https://doi.org/10.1002/ece3.10891