Back to Search Start Over

An FGF-driven feed-forward circuit patterns the cardiopharyngeal mesoderm in space and time

Authors :
Florian Razy-Krajka
Basile Gravez
Nicole Kaplan
Claudia Racioppi
Wei Wang
Lionel Christiaen
Source :
eLife, Vol 7 (2018)
Publication Year :
2018
Publisher :
eLife Sciences Publications Ltd, 2018.

Abstract

In embryos, multipotent progenitors divide to produce distinct progeny and express their full potential. In vertebrates, multipotent cardiopharyngeal progenitors produce second-heart-field-derived cardiomyocytes, and branchiomeric skeletal head muscles. However, the mechanisms underlying these early fate choices remain largely elusive. The tunicate Ciona emerged as an attractive model to study early cardiopharyngeal development at high resolution: through two asymmetric and oriented divisions, defined cardiopharyngeal progenitors produce distinct first and second heart precursors, and pharyngeal muscle (aka atrial siphon muscle, ASM) precursors. Here, we demonstrate that differential FGF-MAPK signaling distinguishes between heart and ASM precursors. We characterize a feed-forward circuit that promotes the successive activations of essential ASM determinants, Hand-related, Tbx1/10 and Ebf. Finally, we show that coupling FGF-MAPK restriction and cardiopharyngeal network deployment with cell divisions defines the timing of gene expression and permits the emergence of diverse cell types from multipotent progenitors.

Details

Language :
English
ISSN :
2050084X
Volume :
7
Database :
Directory of Open Access Journals
Journal :
eLife
Publication Type :
Academic Journal
Accession number :
edsdoj.92f31635c359477297c0b783ac630b11
Document Type :
article
Full Text :
https://doi.org/10.7554/eLife.29656