Back to Search Start Over

Liquid-like and rigid-body motions in molecular-dynamics simulations of a crystalline protein

Authors :
David C. Wych
James S. Fraser
David L. Mobley
Michael E. Wall
Source :
Structural Dynamics, Vol 6, Iss 6, Pp 064704-064704-11 (2019)
Publication Year :
2019
Publisher :
AIP Publishing LLC and ACA, 2019.

Abstract

To gain insight into crystalline protein dynamics, we performed molecular-dynamics (MD) simulations of a periodic 2 × 2 × 2 supercell of staphylococcal nuclease. We used the resulting MD trajectories to simulate X-ray diffraction and to study collective motions. The agreement of simulated X-ray diffraction with the data is comparable to previous MD simulation studies. We studied collective motions by analyzing statistically the covariance of alpha-carbon position displacements. The covariance decreases exponentially with the distance between atoms, which is consistent with a liquidlike motions (LLM) model, in which the protein behaves like a soft material. To gain finer insight into the collective motions, we examined the covariance behavior within a protein molecule (intraprotein) and between different protein molecules (interprotein). The interprotein atom pairs, which dominate the overall statistics, exhibit LLM behavior; however, the intraprotein pairs exhibit behavior that is consistent with a superposition of LLM and rigid-body motions (RBM). Our results indicate that LLM behavior of global dynamics is present in MD simulations of a protein crystal. They also show that RBM behavior is detectable in the simulations but that it is subsumed by the LLM behavior. Finally, the results provide clues about how correlated motions of atom pairs both within and across proteins might manifest in diffraction data. Overall, our findings increase our understanding of the connection between molecular motions and diffraction data and therefore advance efforts to extract information about functionally important motions from crystallography experiments.

Subjects

Subjects :
Crystallography
QD901-999

Details

Language :
English
ISSN :
23297778
Volume :
6
Issue :
6
Database :
Directory of Open Access Journals
Journal :
Structural Dynamics
Publication Type :
Academic Journal
Accession number :
edsdoj.92a613ca992c4753babeb7183254ebed
Document Type :
article
Full Text :
https://doi.org/10.1063/1.5132692