Back to Search
Start Over
Identifying periods impacted by sewer inflow and infiltration using time series anomaly detection
- Source :
- Water Research X, Vol 25, Iss , Pp 100278- (2024)
- Publication Year :
- 2024
- Publisher :
- Elsevier, 2024.
-
Abstract
- Accurate diagnosis of sewer inflow and infiltration (I/I) is crucial for ensuring the safe transportation of sewage and the stability of wastewater treatment processes. Identifying periods impacted by I/I is essential for I/I diagnosis, but current methods lack a standard criterion and require adaptation to specific conditions, resulting in low accuracy, complexity, and limited generalizability. This paper proposes a novel approach to distinguish I/I periods from time series of sewer measurements based on anomaly detection theory through an iterative use of a time-series reconstruction model. This method eliminates the need for external data such as rainfalls and avoids intensive manual data analysis. Operating directly on in-sewer data, it enhances accuracy compared to existing approaches and is applicable to various external factors such as rainfall, snowmelt, and seawater intrusion. The method can be applicable to a broad range of monitoring data, including flow rate, temperature, and conductivity. Validated through simulation studies and demonstrated via real-life applications, this method offers an efficient solution for I/I detection, facilitating further I/I diagnosis, including I/I quantification and location identification.
Details
- Language :
- English
- ISSN :
- 25899147
- Volume :
- 25
- Issue :
- 100278-
- Database :
- Directory of Open Access Journals
- Journal :
- Water Research X
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.927e06cf9add41359f3c84550fe83170
- Document Type :
- article
- Full Text :
- https://doi.org/10.1016/j.wroa.2024.100278