Back to Search Start Over

A broad-spectrum gas sensor based on correlated two-dimensional electron gas

Authors :
Yuhao Hong
Long Wei
Qinghua Zhang
Zhixiong Deng
Xiaxia Liao
Yangbo Zhou
Lei Wang
Tongrui Li
Junhua Liu
Wen Xiao
Shilin Hu
Lingfei Wang
Lin Li
Mark Huijben
Yulin Gan
Kai Chen
Gertjan Koster
Guus Rijnders
Zhaoliang Liao
Source :
Nature Communications, Vol 14, Iss 1, Pp 1-7 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Designing a broad-spectrum gas sensor capable of identifying gas components in complex environments, such as mixed atmospheres or extreme temperatures, is a significant concern for various technologies, including energy, geological science, and planetary exploration. The main challenge lies in finding materials that exhibit high chemical stability and wide working temperature range. Materials that amplify signals through non-chemical methods could open up new sensing avenues. Here, we present the discovery of a broad-spectrum gas sensor utilizing correlated two-dimensional electron gas at a delta-doped LaAlO3/SrTiO3 interface with LaFeO3. Our study reveals that a back-gating on this two-dimensional electron gas can induce a non-volatile metal to insulator transition, which consequently can activate the two-dimensional electron gas to sensitively and quantitatively probe very broad gas species, no matter whether they are polar, non-polar, or inert gases. Different gas species cause resistance change at their sublimation or boiling temperature and a well-defined phase transition angle can quantitatively determine their partial pressures. Such unique correlated two-dimensional electron gas sensor is not affected by gas mixtures and maintains a wide operating temperature range. Furthermore, its readout is a simple measurement of electric resistance change, thus providing a very low-cost and high-efficient broad-spectrum sensing technique.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.926ffbe540ec4b608cfbded29ee39163
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-023-44331-7