Back to Search
Start Over
Impact of wall shear stress on initial bacterial adhesion in rotating annular reactor.
- Source :
- PLoS ONE, Vol 12, Iss 2, p e0172113 (2017)
- Publication Year :
- 2017
- Publisher :
- Public Library of Science (PLoS), 2017.
-
Abstract
- The objective of this study was to investigate the bacterial adhesion under different wall shear stresses in turbulent flow and using a diverse bacterial consortium. A better understanding of the mechanisms governing microbial adhesion can be useful in diverse domains such as industrial processes, medical fields or environmental biotechnologies. The impact of wall shear stress-four values ranging from 0.09 to 7.3 Pa on polypropylene (PP) and polyvinyl chloride (PVC)-was carried out in rotating annular reactors to evaluate the adhesion in terms of morphological and microbiological structures. A diverse inoculum consisting of activated sludge was used. Epifluorescence microscopy was used to quantitatively and qualitatively characterize the adhesion. Attached bacterial communities were assessed by molecular fingerprinting profiles (CE-SSCP). It has been demonstrated that wall shear stress had a strong impact on both quantitative and qualitative aspects of the bacterial adhesion. ANOVA tests also demonstrated the significant impact of wall shear stress on all three tested morphological parameters (surface coverage, number of objects and size of objects) (p-values < 2.10-16). High wall shear stresses increased the quantity of attached bacteria but also altered their spatial distribution on the substratum surface. As the shear increased, aggregates or clusters appeared and their size grew when increasing the shears. Concerning the microbiological composition, the adhered bacterial communities changed gradually with the applied shear.
Details
- Language :
- English
- ISSN :
- 19326203
- Volume :
- 12
- Issue :
- 2
- Database :
- Directory of Open Access Journals
- Journal :
- PLoS ONE
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.92499fd0c2df45639e56850f26e09897
- Document Type :
- article
- Full Text :
- https://doi.org/10.1371/journal.pone.0172113