Back to Search Start Over

Mixed-linker strategy for suppressing structural flexibility of metal-organic framework membranes for gas separation

Authors :
Chung-Kai Chang
Ting-Rong Ko
Tsai-Yu Lin
Yen-Chun Lin
Hyun Jung Yu
Jong Suk Lee
Yi-Pei Li
Heng-Liang Wu
Dun-Yen Kang
Source :
Communications Chemistry, Vol 6, Iss 1, Pp 1-12 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Structural flexibility is a critical issue that limits the application of metal-organic framework (MOF) membranes for gas separation. Herein we propose a mixed-linker approach to suppress the structural flexibility of the CAU-10-based (CAU = Christian-Albrechts-University) membranes. Specifically, pure CAU-10-PDC membranes display high separation performance but at the same time are highly unstable for the separation of CO2/CH4. A partial substitution (30 mol.%) of the linker PDC with BDC significantly improves its stability. Such an approach also allows for decreasing the aperture size of MOFs. The optimized CAU-10-PDC-H (70/30) membrane possesses a high separation performance for CO2/CH4 (separation factor of 74.2 and CO2 permeability of 1,111.1 Barrer under 2 bar of feed pressure at 35°C). A combination of in situ characterization with X-ray diffraction (XRD) and diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, as well as periodic density functional theory (DFT) calculations, unveils the origin of the mixed-linker approach to enhancing the structural stability of the mixed-linker CAU-10-based membranes during the gas permeation tests.

Subjects

Subjects :
Chemistry
QD1-999

Details

Language :
English
ISSN :
23993669
Volume :
6
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Communications Chemistry
Publication Type :
Academic Journal
Accession number :
edsdoj.92115d243094d128ad60e837d1c84e3
Document Type :
article
Full Text :
https://doi.org/10.1038/s42004-023-00917-2