Back to Search Start Over

Atomic positions and displacements in piezoelectric materials Ca3TaGa3Si2O14 and Ca3TaGa1.5Al1.5Si2O14 investigated by Ta-Lα X-ray fluorescence holography

Authors :
Mamoru Kitaura
Artoni Kevin R. Ang
Yuta Yamamoto
Naohisa Happo
Koji Kimura
Kouichi Hayashi
Shinta Watanabe
Yuui Yokota
Yuji Ohashi
Kei Kamada
Akira Yoshikawa
Hisanori Yamane
Akimasa Ohnishi
Source :
Frontiers in Materials, Vol 9 (2022)
Publication Year :
2022
Publisher :
Frontiers Media S.A., 2022.

Abstract

The atomic positions and displacements of atoms around the Ta atom in piezoelectric materials Ca3TaGa3Si2O7 (CTGS) and Ca3TaGa1.5Al1.5Si2O7 (CTGAS) were investigated at 100 K by Ta-Lα X-ray fluorescence holography (XFH). The experimental atomic images were compared with the simulated ones using the crystal structures of CTGS and CTGAS, which were determined by single crystal X-ray diffractometry (SC-XRD). The atomic positions agreed between XFH and SC-XRD experiments. With the help of XFH simulation, the displacements of Ta, Ca, Si, and Ga atoms relative to the Ta atom were qualitatively analyzed using experimental atomic image intensities. The relative displacement of the Ca atom was increased by Al substitution, while those of the Ta and Ga atoms were decreased. The first principles calculation based on density-functional theory (DFT) was performed to understand bonding character between constituents. The evaluation of the crystal orbital Hamilton population (COHP) clarified that the Ca-O bond has strong ionic character different with the other bonds, suggesting that the positional shift of the Ca atom is responsible for the piezoelectricity in CTGS. The effect of Al substitution on piezoelectricity was also considered based on the change in the Ca-O bond.

Details

Language :
English
ISSN :
22968016
Volume :
9
Database :
Directory of Open Access Journals
Journal :
Frontiers in Materials
Publication Type :
Academic Journal
Accession number :
edsdoj.91ff280f451d4809a4d671ff63ba90b7
Document Type :
article
Full Text :
https://doi.org/10.3389/fmats.2022.977371