Back to Search Start Over

Robust Control System for DFIG-Based WECS and Energy Storage in reel Wind Conditions

Authors :
Chojaa Hamid
Derouich Aziz
Othmane Zamzoum
Abderrahman El Idrissi
Source :
EAI Endorsed Transactions on Energy Web, Vol 11 (2024)
Publication Year :
2024
Publisher :
European Alliance for Innovation (EAI), 2024.

Abstract

This research work focuses on addressing the challenges of controlling a wind energy conversion system (WECS) connected to the grid, particularly when faced with variable wind speed profiles. The system consists of a Doubly-Fed Induction Generator (DFIG) connected to the grid through an AC/DC/AC converter, along with a Li-ion battery storage system connected to the Back-to-Back converter DC link via a DC/DC converter. The non-linearity and internal parametric variation of the wind turbine can negatively impact energy production, battery charging performance, and battery lifespan. To overcome these issues, the study proposes a robust control approach called Integral action Sliding Mode Control (ISMC) to enhance the dynamic performance of the WECS based on DFIG. Additionally, the battery charging and discharging controllers play a crucial role in efficiently distributing power to the grid and storage unit based on the battery's state of charge, extracted energy, and power injected into the grid. Two current regulation modes, buck charging and boost discharging, are employed to ensure proper energy distribution. Furthermore, a storage system energy management algorithm is implemented to ensure battery safety during one of the charging modes. The effectiveness and robustness of the proposed control method were validated through simulations of a 1.5 MW wind power conversion system using Matlab/Simulink. The results confirmed the method's efficiency and efficacy.

Details

Language :
English
ISSN :
2032944X
Volume :
11
Database :
Directory of Open Access Journals
Journal :
EAI Endorsed Transactions on Energy Web
Publication Type :
Academic Journal
Accession number :
edsdoj.9198f9c8424bf086913113b38f5fc1
Document Type :
article
Full Text :
https://doi.org/10.4108/ew.4856