Back to Search Start Over

Training machine learning models on climate model output yields skillful interpretable seasonal precipitation forecasts

Authors :
Peter B. Gibson
William E. Chapman
Alphan Altinok
Luca Delle Monache
Michael J. DeFlorio
Duane E. Waliser
Source :
Communications Earth & Environment, Vol 2, Iss 1, Pp 1-13 (2021)
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

Seasonal forecasting skill in machine learning methods that are trained on large climate model ensembles can compete with, or out-compete, existing dynamical models, while retaining physical interpretability.

Details

Language :
English
ISSN :
26624435
Volume :
2
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Communications Earth & Environment
Publication Type :
Academic Journal
Accession number :
edsdoj.91735fc8166e455f88e2a5b2a1307447
Document Type :
article
Full Text :
https://doi.org/10.1038/s43247-021-00225-4