Back to Search
Start Over
Training machine learning models on climate model output yields skillful interpretable seasonal precipitation forecasts
- Source :
- Communications Earth & Environment, Vol 2, Iss 1, Pp 1-13 (2021)
- Publication Year :
- 2021
- Publisher :
- Nature Portfolio, 2021.
-
Abstract
- Seasonal forecasting skill in machine learning methods that are trained on large climate model ensembles can compete with, or out-compete, existing dynamical models, while retaining physical interpretability.
- Subjects :
- Geology
QE1-996.5
Environmental sciences
GE1-350
Subjects
Details
- Language :
- English
- ISSN :
- 26624435
- Volume :
- 2
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Communications Earth & Environment
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.91735fc8166e455f88e2a5b2a1307447
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s43247-021-00225-4