Back to Search Start Over

Nonexistence of the compressible Euler equations with space-dependent damping in high dimensions

Authors :
Geng Jinbo
Hu Ke
Lai Ning-An
Yuen Manwai
Source :
Advances in Nonlinear Analysis, Vol 13, Iss 1, Pp 5035-5077 (2024)
Publication Year :
2024
Publisher :
De Gruyter, 2024.

Abstract

Compressible Euler equations with space-dependent damping in high dimensions Rn(n=2,3){{\bf{R}}}^{n}\hspace{0.33em}\hspace{0.33em}\left(n=2,3) are considered in this article. Assuming that the small initial velocity and small perturbation of the initial density have compact support, we establish finite-time blow-up results for the Euler system, by combining energy estimate and new test functions constructed by the solutions of the following linear elliptic partial differential equations system: −G1(x)+∇⋅G2→(x)=0,−G2→(x)+∇G1(x)=μG2→(x)(1+∣x∣)λ.\left\{\begin{array}{l}-{G}_{1}\left(x)+\nabla \cdot \overrightarrow{{G}_{2}}\left(x)=0,\\ -\overrightarrow{{G}_{2}}\left(x)+\nabla {G}_{1}\left(x)=\frac{\mu \overrightarrow{{G}_{2}}\left(x)}{{(1+| x| )}^{\lambda }}.\end{array}\right. This result generalizes the one in the literature from 1−D1-D to high dimension Rn(n=2,3){{\bf{R}}}^{n}\hspace{0.33em}\hspace{0.33em}\left(n=2,3).

Details

Language :
English
ISSN :
2191950X
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Advances in Nonlinear Analysis
Publication Type :
Academic Journal
Accession number :
edsdoj.91528af7a0214039902d3ca5b306cecc
Document Type :
article
Full Text :
https://doi.org/10.1515/anona-2024-0043