Back to Search Start Over

Mössbauer Spectroscopy and Magnetic Properties of Bi0.8Ca0.2-xSrxFeO3 Nanoparticles by Sol-Gel Method

Authors :
Jin Pei LIN
Ze Ping GUO
Yun Long WANG
Qing LIN
Kang Ling HUANG
Yun HE
Source :
Medžiagotyra, Vol 25, Iss 2, Pp 135-140 (2019)
Publication Year :
2019
Publisher :
Kaunas University of Technology, 2019.

Abstract

Doping at A/B-sites can effectively improve the physical properties of perovskite ferrites. In this study, the performance of Bi0.8Ca0.2-xSrxFeO3 was investigated using the sol-gel autocombustion method. The results show that with an increase in x value, the grain size first increases and then decreases. With an increase in the doping concentration, the reunion phenomenon reduces, but the smoothness and flatness of the samples are also destroyed. Moreover, with increasing Sr2+ concentration, particle growth is inhibited, resulting in smaller particle sizes. When the Sr2+ concentration increases to a certain value, the environment becomes advantageous for particle growth and therefore the particle size increases. For x=0.13, small particles are obtained. With increasing Sr2+ concentration, the spatial modulation of the spin structure is destroyed, the lattice distorts, and the magnetic force is freed. Mössbauer spectrum measurements shows that when the Ca2+ concentration is greater than the Sr2+ concentration, Sr2+ ions replace Ca2+ ions; as a result, A-A magnetic superexchange diminishes, leading to a decrease in the hyperfine field. Appropriate doping of BiFeO3 can improve its coercivity and refine its grains and result in a larger magnetic force.

Details

Language :
English
ISSN :
13921320 and 20297289
Volume :
25
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Medžiagotyra
Publication Type :
Academic Journal
Accession number :
edsdoj.9147b168f54649a2b08a07a14cb83ad7
Document Type :
article
Full Text :
https://doi.org/10.5755/j01.ms.25.2.19456