Back to Search Start Over

Representative proteomes: a stable, scalable and unbiased proteome set for sequence analysis and functional annotation.

Authors :
Chuming Chen
Darren A Natale
Robert D Finn
Hongzhan Huang
Jian Zhang
Cathy H Wu
Raja Mazumder
Source :
PLoS ONE, Vol 6, Iss 4, p e18910 (2011)
Publication Year :
2011
Publisher :
Public Library of Science (PLoS), 2011.

Abstract

The accelerating growth in the number of protein sequences taxes both the computational and manual resources needed to analyze them. One approach to dealing with this problem is to minimize the number of proteins subjected to such analysis in a way that minimizes loss of information. To this end we have developed a set of Representative Proteomes (RPs), each selected from a Representative Proteome Group (RPG) containing similar proteomes calculated based on co-membership in UniRef50 clusters. A Representative Proteome is the proteome that can best represent all the proteomes in its group in terms of the majority of the sequence space and information. RPs at 75%, 55%, 35% and 15% co-membership threshold (CMT) are provided to allow users to decrease or increase the granularity of the sequence space based on their requirements. We find that a CMT of 55% (RP55) most closely follows standard taxonomic classifications. Further analysis of this set reveals that sequence space is reduced by more than 80% relative to UniProtKB, while retaining both sequence diversity (over 95% of InterPro domains) and annotation information (93% of experimentally characterized proteins). All sets can be browsed and are available for sequence similarity searches and download at http://www.proteininformationresource.org/rps, while the set of 637 RPs determined using a 55% CMT are also available for text searches. Potential applications include sequence similarity searches, protein classification and targeted protein annotation and characterization.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
6
Issue :
4
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.91325256431f471fb895dc45c1093642
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0018910