Back to Search
Start Over
Retinal Image Enhancement Using Cycle-Constraint Adversarial Network
- Source :
- Frontiers in Medicine, Vol 8 (2022)
- Publication Year :
- 2022
- Publisher :
- Frontiers Media S.A., 2022.
-
Abstract
- Retinal images are the most intuitive medical images for the diagnosis of fundus diseases. Low-quality retinal images cause difficulties in computer-aided diagnosis systems and the clinical diagnosis of ophthalmologists. The high quality of retinal images is an important basis of precision medicine in ophthalmology. In this study, we propose a retinal image enhancement method based on deep learning to enhance multiple low-quality retinal images. A generative adversarial network is employed to build a symmetrical network, and a convolutional block attention module is introduced to improve the feature extraction capability. The retinal images in our dataset are sorted into two sets according to their quality: low and high quality. Generators and discriminators alternately learn the features of low/high-quality retinal images without the need for paired images. We analyze the proposed method both qualitatively and quantitatively on public datasets and a private dataset. The study results demonstrate that the proposed method is superior to other advanced algorithms, especially in enhancing color-distorted retinal images. It also performs well in the task of retinal vessel segmentation. The proposed network effectively enhances low-quality retinal images, aiding ophthalmologists and enabling computer-aided diagnosis in pathological analysis. Our method enhances multiple types of low-quality retinal images using a deep learning network.
Details
- Language :
- English
- ISSN :
- 2296858X
- Volume :
- 8
- Database :
- Directory of Open Access Journals
- Journal :
- Frontiers in Medicine
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.912b2c5f82db4a8dab625a1aa0199f7a
- Document Type :
- article
- Full Text :
- https://doi.org/10.3389/fmed.2021.793726