Back to Search Start Over

Prediction and causal inference of cardiovascular and cerebrovascular diseases based on lifestyle questionnaires

Authors :
Riku Nambo
Shigehiro Karashima
Ren Mizoguchi
Seigo Konishi
Atsushi Hashimoto
Daisuke Aono
Mitsuhiro Kometani
Kenji Furukawa
Takashi Yoneda
Kousuke Imamura
Hidetaka Nambo
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-10 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Cardiovascular and cerebrovascular diseases (CCVD) are prominent mortality causes in Japan, necessitating effective preventative measures, early diagnosis, and treatment to mitigate their impact. A diagnostic model was developed to identify patients with ischemic heart disease (IHD), stroke, or both, using specific health examination data. Lifestyle habits affecting CCVD development were analyzed using five causal inference methods. This study included 473,734 patients aged ≥ 40 years who underwent specific health examinations in Kanazawa, Japan between 2009 and 2018 to collect data on basic physical information, lifestyle habits, and laboratory parameters such as diabetes, lipid metabolism, renal function, and liver function. Four machine learning algorithms were used: Random Forest, Logistic regression, Light Gradient Boosting Machine, and eXtreme-Gradient-Boosting (XGBoost). The XGBoost model exhibited superior area under the curve (AUC), with mean values of 0.770 (± 0.003), 0.758 (± 0.003), and 0.845 (± 0.005) for stroke, IHD, and CCVD, respectively. The results of the five causal inference analyses were summarized, and lifestyle behavior changes were observed after the onset of CCVD. A causal relationship from ‘reduced mastication’ to ‘weight gain’ was found for all causal species theory methods. This prediction algorithm can screen for asymptomatic myocardial ischemia and stroke. By selecting high-risk patients suspected of having CCVD, resources can be used more efficiently for secondary testing.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.911eee71c81c44c4829b0ca93bcff746
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-61047-w