Back to Search
Start Over
High-level thermochemistry for the octasulfur ring: A converged coupled cluster perspective for a challenging second-row system
- Source :
- Chemical Physics Impact, Vol 3, Iss , Pp 100047- (2021)
- Publication Year :
- 2021
- Publisher :
- Elsevier, 2021.
-
Abstract
- Sulfur clusters are challenging targets for high-level ab initio procedures. The heat of formation of the most common and energetically stable S8 allotrope (α-sulfur) has not been the subject of a high-level ab initio investigation. We apply the Weizmann-n computational thermochemistry protocols to the S8 sulfur cluster. We show that calculating the heat of formation with sub-chemical accuracy requires accurate treatment of post-CCSD(T), core-valence, scalar relativistic, and zero-point vibrational energy contributions. At the relativistic, all-electron CCSDT(Q)/CBS level of theory we obtain an enthalpy of formation at 0 K of ∆fH°0 = 24.44 kcal mol–1, and at 298 K of ∆fH°298 = 23.51 kcal mol–1. These values suggest that the experimental values from Gurvich (∆fH°0 = 25.1 ± 0.5 kcal mol–1) and JANAF (∆fH°0 = 24.95 ± 0.15 and ∆fH°298 = 24.00 ± 0.15 kcal mol–1) represent overestimations and should be revised downward by 0.5–0.7 kcal mol–1. We also show that computationally economical composite ab initio protocols such as G4, G4(MP2), and CBS-QB3 are unable to achieve chemical accuracy relative to our best CCSDT(Q)/CBS heat of formation for S8.
Details
- Language :
- English
- ISSN :
- 26670224
- Volume :
- 3
- Issue :
- 100047-
- Database :
- Directory of Open Access Journals
- Journal :
- Chemical Physics Impact
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.9107e2789de47fa8f6c96f1a917900f
- Document Type :
- article
- Full Text :
- https://doi.org/10.1016/j.chphi.2021.100047