Back to Search Start Over

The Structural, Photocatalytic Property Characterization and Enhanced Photocatalytic Activities of Novel Photocatalysts Bi2GaSbO7 and Bi2InSbO7 during Visible Light Irradiation

Authors :
Jingfei Luan
Yue Shen
Yanyan Li
Yaron Paz
Source :
Materials, Vol 9, Iss 10, p 801 (2016)
Publication Year :
2016
Publisher :
MDPI AG, 2016.

Abstract

In order to develop original and efficient visible light response photocatalysts for degrading organic pollutants in wastewater, new photocatalysts Bi2GaSbO7 and Bi2InSbO7 were firstly synthesized by a solid-state reaction method and their chemical, physical and structural properties were characterized. Bi2GaSbO7 and Bi2InSbO7 were crystallized with a pyrochlore-type structure and the lattice parameter of Bi2GaSbO7 or Bi2InSbO7 was 10.356497 Å or 10.666031 Å. The band gap of Bi2GaSbO7 or Bi2InSbO7 was estimated to be 2.59 eV or 2.54 eV. Compared with nitrogen doped TiO2, Bi2GaSbO7 and Bi2InSbO7, both showed excellent photocatalytic activities for degrading methylene blue during visible light irradiation due to their narrower band gaps and higher crystallization perfection. Bi2GaSbO7 showed higher catalytic activity compared with Bi2InSbO7. The photocatalytic degradation of methylene blue followed by the first-order reaction kinetics and the first-order rate constant was 0.01470 min−1, 0.00967 min−1 or 0.00259 min−1 with Bi2GaSbO7, Bi2InSbO7 or nitrogen doped TiO2 as a catalyst. The evolution of CO2 and the removal of total organic carbon were successfully measured and these results indicated continuous mineralization of methylene blue during the photocatalytic process. The possible degradation scheme and pathway of methylene blue was also analyzed. Bi2GaSbO7 and Bi2InSbO7 photocatalysts both had great potential to purify textile industry wastewater.

Details

Language :
English
ISSN :
19961944
Volume :
9
Issue :
10
Database :
Directory of Open Access Journals
Journal :
Materials
Publication Type :
Academic Journal
Accession number :
edsdoj.90d728b858e44561a4a746404fd1a6bc
Document Type :
article
Full Text :
https://doi.org/10.3390/ma9100801