Back to Search Start Over

A further study on an attraction-repulsion chemotaxis system with logistic source

Authors :
Wanjuan Du
Source :
AIMS Mathematics, Vol 9, Iss 7, Pp 16924-16930 (2024)
Publication Year :
2024
Publisher :
AIMS Press, 2024.

Abstract

This paper is concerned with the attraction-repulsion chemotaxis system (1.1) define on a bounded domain $ \Omega \subset \mathbb{R}^N(N\geq 1) $ with no-flux boundary conditions. The source function $ f $ in this system is a smooth function $ f $ that satisfies $ f(u)\leq a-bu^\eta $ for $ u\geq0 $. It is proven that $ \eta\geq1 $ is sufficient to ensure the boundedness of the solution when $ r < \frac{4(N+1)}{N(N+2)} $ is in the balance case $ \chi\alpha = \xi\gamma $, which improve the relevant results presented in papers such as Li and Xiang (2016), Xu and Zheng (2018), Xie and Zheng (2021), and Tang, Zheng and Li (2023).

Details

Language :
English
ISSN :
24736988
Volume :
9
Issue :
7
Database :
Directory of Open Access Journals
Journal :
AIMS Mathematics
Publication Type :
Academic Journal
Accession number :
edsdoj.90cf036522444044a852339be371b95e
Document Type :
article
Full Text :
https://doi.org/10.3934/math.2024822?viewType=HTML