Back to Search
Start Over
A further study on an attraction-repulsion chemotaxis system with logistic source
- Source :
- AIMS Mathematics, Vol 9, Iss 7, Pp 16924-16930 (2024)
- Publication Year :
- 2024
- Publisher :
- AIMS Press, 2024.
-
Abstract
- This paper is concerned with the attraction-repulsion chemotaxis system (1.1) define on a bounded domain $ \Omega \subset \mathbb{R}^N(N\geq 1) $ with no-flux boundary conditions. The source function $ f $ in this system is a smooth function $ f $ that satisfies $ f(u)\leq a-bu^\eta $ for $ u\geq0 $. It is proven that $ \eta\geq1 $ is sufficient to ensure the boundedness of the solution when $ r < \frac{4(N+1)}{N(N+2)} $ is in the balance case $ \chi\alpha = \xi\gamma $, which improve the relevant results presented in papers such as Li and Xiang (2016), Xu and Zheng (2018), Xie and Zheng (2021), and Tang, Zheng and Li (2023).
- Subjects :
- attraction-repulsion
boundedness
logistic source
chemotaxis
Mathematics
QA1-939
Subjects
Details
- Language :
- English
- ISSN :
- 24736988
- Volume :
- 9
- Issue :
- 7
- Database :
- Directory of Open Access Journals
- Journal :
- AIMS Mathematics
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.90cf036522444044a852339be371b95e
- Document Type :
- article
- Full Text :
- https://doi.org/10.3934/math.2024822?viewType=HTML