Back to Search Start Over

Fast Response, High‐Power Tunable Ultrathin Soft Actuator by Functional Piezoelectric Material Composite for Haptic Device Application

Authors :
Yoshinori Shouji
Tomohito Sekine
Keita Ito
Naoya Ito
Tatsuya Yasuda
Yi‐Fei Wang
Yasunori Takeda
Daisuke Kumaki
Fabrice Domingues Dos Santos
Atsushi Miyabo
Shizuo Tokito
Source :
Advanced Electronic Materials, Vol 9, Iss 9, Pp n/a-n/a (2023)
Publication Year :
2023
Publisher :
Wiley-VCH, 2023.

Abstract

Abstract Recently, self‐driven soft robotics based on biomimetics, capable of mimicking biological motion, has attracted attention. Soft actuators using intrinsically soft organic materials are expected to be applied to haptic devices, artificial muscles, and micropumps. Ferroelectric polymers can aid in the realization of such soft actuators. However, actuators using such materials encounter problems in terms of the response frequency to an applied voltage. In this study, a soft actuator is fabricated by a printing process using a unique composite material comprising P(VDF‐TrFE), nano‐carbon material (single‐walled carbon nanotubes (SWCNT) and graphene oxide (GO)), and conductive polymer. To characterize the actuator using a minimum substrate thickness of 25 µm, hysteresis curves in the ferroelectric properties and driving characteristics according to the applied frequency are clarified. In addition, the mechanical life of the actuator under continuous voltage sweep is clarified considering it as a mechanical property. Subsequently, a simple haptics system is constructed using the fabricated actuators, and a human‐sensitive actuator demonstration system is constructed wherein the phase of the sweep frequency is variable.

Details

Language :
English
ISSN :
2199160X
Volume :
9
Issue :
9
Database :
Directory of Open Access Journals
Journal :
Advanced Electronic Materials
Publication Type :
Academic Journal
Accession number :
edsdoj.90cd10a04204fc08ef3debe10df0be4
Document Type :
article
Full Text :
https://doi.org/10.1002/aelm.202201040