Back to Search
Start Over
Machine learning-assisted lens-loaded cavity response optimization for improved direction-of-arrival estimation
- Source :
- Scientific Reports, Vol 12, Iss 1, Pp 1-13 (2022)
- Publication Year :
- 2022
- Publisher :
- Nature Portfolio, 2022.
-
Abstract
- Abstract This paper presents a millimeter-wave direction of arrival estimation (DoA) technique powered by dynamic aperture optimization. The frequency-diverse medium in this work is a lens-loaded oversized mmWave cavity that hosts quasi-random wave-chaotic radiation modes. The presence of the lens is shown to confine the radiation within the field of view and improve the gain of each radiation mode; hence, enhancing the accuracy of the DoA estimation. It is also shown, for the first time, that a lens loaded-cavity can be transformed into a lens-loaded dynamic aperture by introducing a mechanically controlled mode-mixing mechanism inside the cavity. This work also proposes a way of optimizing this lens-loaded dynamic aperture by exploiting the mode mixing mechanism governed by a machine learning-assisted evolutionary algorithm. The concept is verified by a series of extensive simulations of the dynamic aperture states obtained via the machine learning-assisted evolutionary optimization technique. The simulation results show a 25 $$\%$$ % improvement in the conditioning for the DoA estimation using the proposed technique.
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 12
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.907b13f1a1b94ce385484a572388b3ca
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41598-022-12011-z