Back to Search
Start Over
High-calorie diets uncouple hypothalamic oxytocin neurons from a gut-to-brain satiation pathway via κ-opioid signaling
- Source :
- Cell Reports, Vol 42, Iss 10, Pp 113305- (2023)
- Publication Year :
- 2023
- Publisher :
- Elsevier, 2023.
-
Abstract
- Summary: Oxytocin-expressing paraventricular hypothalamic neurons (PVNOT neurons) integrate afferent signals from the gut, including cholecystokinin (CCK), to adjust whole-body energy homeostasis. However, the molecular underpinnings by which PVNOT neurons orchestrate gut-to-brain feeding control remain unclear. Here, we show that mice undergoing selective ablation of PVNOT neurons fail to reduce food intake in response to CCK and develop hyperphagic obesity on a chow diet. Notably, exposing wild-type mice to a high-fat/high-sugar (HFHS) diet recapitulates this insensitivity toward CCK, which is linked to diet-induced transcriptional and electrophysiological aberrations specifically in PVNOT neurons. Restoring OT pathways in diet-induced obese (DIO) mice via chemogenetics or polypharmacology sufficiently re-establishes CCK’s anorexigenic effects. Last, by single-cell profiling, we identify a specialized PVNOT neuronal subpopulation with increased κ-opioid signaling under an HFHS diet, which restrains their CCK-evoked activation. In sum, we document a (patho)mechanism by which PVNOT signaling uncouples a gut-brain satiation pathway under obesogenic conditions.
- Subjects :
- CP: Neuroscience
Biology (General)
QH301-705.5
Subjects
Details
- Language :
- English
- ISSN :
- 22111247
- Volume :
- 42
- Issue :
- 10
- Database :
- Directory of Open Access Journals
- Journal :
- Cell Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.90782dfc60ca478ea59744d818a5084b
- Document Type :
- article
- Full Text :
- https://doi.org/10.1016/j.celrep.2023.113305