Back to Search Start Over

Comparative transcriptome analysis revealed differential gene expression in multiple signaling pathways at flowering in polyploid Brassica rapa

Authors :
Janeen Braynen
Yan Yang
Jiachen Yuan
Zhengqing Xie
Gangqiang Cao
Xiaochun Wei
Gongyao Shi
Xiaowei Zhang
Fang Wei
Baoming Tian
Source :
Cell & Bioscience, Vol 11, Iss 1, Pp 1-13 (2021)
Publication Year :
2021
Publisher :
BMC, 2021.

Abstract

Abstract Background Polyploidy is widespread in angiosperms and has a significant impact on plant evolution, diversity, and breeding program. However, the changes in the flower development regulatory mechanism in autotetraploid plants remains relatively limited. In this study, RNA-seq analysis was used to investigate changes in signaling pathways at flowering in autotetraploid Brassica rapa. Results The study findings showed that the key genes such as CO, CRY2, and FT which promotes floral formation were down-regulated, whereas floral transition genes FPF1 and FD were up-regulated in autotetraploid B. rapa. The data also demonstrated that the positive regulators GA1 and ELA1 in the gibberellin’s biosynthesis pathway were negatively regulated by polyploidy in B. rapa. Furthermore, transcriptional factors (TFs) associated with flower development were significantly differentially expressed including the up-regulated CIB1 and AGL18, and the down-regulated AGL15 genes, and by working together such genes affected the expression of the down-stream flowering regulator FLOWERING LOCUS T in polyploid B. rapa. Compared with that in diploids autotetrapoid plants consist of differential expression within the signaling transduction pathway, with 13 TIFY gens up-regulated and 17 genes related to auxin pathway down-regulated. Conclusion Therefore, polyploidy is more likely to integrate multiple signaling pathways to influence flowering in B. rapa after polyploidization. In general, the present results shed new light on our global understanding of flowering regulation in polyploid plants during breeding program.

Details

Language :
English
ISSN :
20453701
Volume :
11
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Cell & Bioscience
Publication Type :
Academic Journal
Accession number :
edsdoj.904c0abbd5264eb2a1c4400eeaa88cf3
Document Type :
article
Full Text :
https://doi.org/10.1186/s13578-021-00528-1