Back to Search
Start Over
Equidimensionality of universal pseudodeformation rings in characteristic p for absolute Galois groups of p-adic fields
- Source :
- Forum of Mathematics, Sigma, Vol 11 (2023)
- Publication Year :
- 2023
- Publisher :
- Cambridge University Press, 2023.
-
Abstract
- Let K be a finite extension of the p-adic field ${\mathbb {Q}}_p$ of degree d, let ${{\mathbb {F}}\,\!{}}$ be a finite field of characteristic p and let ${\overline {{D}}}$ be an n-dimensional pseudocharacter in the sense of Chenevier of the absolute Galois group of K over the field ${{\mathbb {F}}\,\!{}}$ . For the universal mod p pseudodeformation ring ${\overline {R}{{\phantom {\overline {\overline m}}}}^{\operatorname {univ}}_{{{\overline {{D}}}}}}$ of ${\overline {{D}}}$ , we prove the following: The ring $\overline R_{{\overline {{D}}}}^{\mathrm {ps}}$ is equidimensional of dimension $dn^2+1$ . Its reduced quotient ${\overline {R}{{\phantom {\overline {\overline m}}}}^{\operatorname {univ}}_{{{\overline {{D}}},{\operatorname {red}}}}}$ contains a dense open subset of regular points x whose associated pseudocharacter ${D}_x$ is absolutely irreducible and nonspecial in a certain technical sense that we shall define. Moreover, we will characterize in most cases when K does not contain a p-th root of unity the singular locus of ${\mathrm {Spec}}\ {\overline {R}{{\phantom {\overline {\overline m}}}}^{\operatorname {univ}}_{{{\overline {{D}}}}}}$ . Similar results were proved by Chenevier for the generic fiber of the universal pseudodeformation ring ${R{{\phantom {\overline {m}}}}^{\operatorname {univ}}_{{{\overline {D}}}}}$ of ${\overline {{D}}}$ .
- Subjects :
- 11F80
11F85
11F70
Mathematics
QA1-939
Subjects
Details
- Language :
- English
- ISSN :
- 20505094
- Volume :
- 11
- Database :
- Directory of Open Access Journals
- Journal :
- Forum of Mathematics, Sigma
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.901560ab4944fe19d9ffa7c58971382
- Document Type :
- article
- Full Text :
- https://doi.org/10.1017/fms.2023.82