Back to Search Start Over

Early predictions of response and survival from a tumor dynamics model in patients with recurrent, metastatic head and neck squamous cell carcinoma treated with immunotherapy

Authors :
Ignacio González‐García
Vadryn Pierre
Vincent F. S. Dubois
Nassim Morsli
Stuart Spencer
Paul G. Baverel
Helen Moore
Source :
CPT: Pharmacometrics & Systems Pharmacology, Vol 10, Iss 3, Pp 230-240 (2021)
Publication Year :
2021
Publisher :
Wiley, 2021.

Abstract

Abstract We developed and evaluated a method for making early predictions of best overall response (BOR) and overall survival at 6 months (OS6) in patients with cancer treated with immunotherapy. This method combines machine learning with modeling of longitudinal tumor size data. We applied our method to data from durvalumab‐exposed patients with recurrent/metastatic head and neck cancer. A fivefold cross‐validation was used for model selection. Independent trial data, with various degrees of data truncation, were used for model validation. Mean classification error rates (90% confidence intervals [CIs]) from cross‐validation were 5.99% (90% CI 2.98%–7.50%) for BOR and 19.8% (90% CI 15.8%–39.3%) for OS6. During model validation, the area under the receiver operating characteristic curves was preserved for BOR (0.97, 0.97, and 0.94) and OS6 (0.85, 0.84, and 0.82) at 24, 18, and 12 weeks, respectively. These results suggest our method predicts trial outcomes accurately from early data and could be used to aid drug development.

Subjects

Subjects :
Therapeutics. Pharmacology
RM1-950

Details

Language :
English
ISSN :
21638306
Volume :
10
Issue :
3
Database :
Directory of Open Access Journals
Journal :
CPT: Pharmacometrics & Systems Pharmacology
Publication Type :
Academic Journal
Accession number :
edsdoj.8fbcb3e56e864a4ab7bd5c18996aa967
Document Type :
article
Full Text :
https://doi.org/10.1002/psp4.12594