Back to Search
Start Over
Unfolding and modeling the recovery process after COVID lockdowns
- Source :
- Scientific Reports, Vol 13, Iss 1, Pp 1-13 (2023)
- Publication Year :
- 2023
- Publisher :
- Nature Portfolio, 2023.
-
Abstract
- Abstract Lockdown is a common policy used to deter the spread of COVID-19. However, the question of how our society comes back to life after a lockdown remains an open one. Understanding how cities bounce back from lockdown is critical for promoting the global economy and preparing for future pandemics. Here, we propose a novel computational method based on electricity data to study the recovery process, and conduct a case study on the city of Hangzhou. With the designed Recovery Index, we find a variety of recovery patterns in main sectors. One of the main reasons for this difference is policy; therefore, we aim to answer the question of how policies can best facilitate the recovery of society. We first analyze how policy affects sectors and employ a change-point detection algorithm to provide a non-subjective approach to policy assessment. Furthermore, we design a model that can predict future recovery, allowing policies to be adjusted accordingly in advance. Specifically, we develop a deep neural network, TPG, to model recovery trends, which utilizes the graph structure learning to perceive influences between sectors. Simulation experiments using our model offer insights for policy-making: the government should prioritize supporting sectors that have greater influence on others and are influential on the whole economy.
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 13
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.8f9ff0000c24ad2b8d708c569d2b64e
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41598-023-30100-5