Back to Search Start Over

Automatic Features Detection in a Fluvial Environment through Machine Learning Techniques Based on UAVs Multispectral Data

Authors :
Emanuele Pontoglio
Paolo Dabove
Nives Grasso
Andrea Maria Lingua
Source :
Remote Sensing, Vol 13, Iss 19, p 3983 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

The present work aims to demonstrate how machine learning (ML) techniques can be used for automatic feature detection and extraction in fluvial environments. The use of photogrammetry and machine learning algorithms has improved the understanding of both environmental and anthropic issues. The developed methodology was applied considering the acquisition of multiple photogrammetric images thanks to unmanned aerial vehicles (UAV) carrying multispectral cameras. These surveys were carried out in the Salbertrand area, along the Dora Riparia River, situated in Piedmont (Italy). The authors developed an algorithm able to identify and detect the water table contour concerning the landed areas: the automatic classification in ML found a valid identification of different patterns (water, gravel bars, vegetation, and ground classes) in specific hydraulic and geomatics conditions. Indeed, the RE+NIR data gave us a sharp rise in terms of accuracy by about 11% and 13.5% of F1-score average values in the testing point clouds compared to RGB data. The obtained results about the automatic classification led us to define a new procedure with precise validity conditions.

Details

Language :
English
ISSN :
20724292
Volume :
13
Issue :
19
Database :
Directory of Open Access Journals
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.8f8ea1d0fe5040879ba12027444ba1e8
Document Type :
article
Full Text :
https://doi.org/10.3390/rs13193983