Back to Search Start Over

Design, Preparation, Characterization and Evaluation of Five Cocrystal Hydrates of Fluconazole with Hydroxybenzoic Acids

Authors :
Hongmei Yu
Baoxi Zhang
Meiju Liu
Wenhui Xing
Kun Hu
Shiying Yang
Guorong He
Ningbo Gong
Guanhua Du
Yang Lu
Source :
Pharmaceutics, Vol 14, Iss 11, p 2486 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

To modulate the physicochemical properties of fluconazole (FLZ), a multifunctional antifungal drug, the crystal engineering technique was employed. In this paper, five novel cocrystal hydrates of FLZ with a range of phenolic acids from the GRAS list, namely, 2,4-dihydroxybenzoic acid (24DHB), 3,4-dihydroxybenzoic acid (34DHB, form I and form II), 3,5-dihydroxybenzoic acid (35DHB), and 3,4,5-trihydroxybenzoic acid (345THB) were disclosed and reported for the first time. Crystals of these five hydrates were all obtained for single-crystal X-ray diffraction (SCXRD) analysis. Robust (hydroxyl/carboxyl) O−H. . . Narom hydrogen bonds between acids and FLZ triazolyl moiety were observed to be dominant in guiding these crystal forms. The water molecule plays the role of supramolecular “linkage” in the strengthening and stabilization of these hydrates by interacting with FLZ and acids through O−H. . . O hydrogen bonds. In particular, the formation of FLZ−34DHB−H2O (1:1:1) significantly reduces hygroscopicity and hence improves the stability of FLZ, the latter of which is unstable and easily transforms into its monohydrate form. Increased initial dissolution rates were observed in the obtained cocrystal forms, and an enhanced intrinsic dissolution rate was obtained in FLZ−35DHB−H2O (1:1:1) in comparison with commercialized FLZ form II.

Details

Language :
English
ISSN :
19994923
Volume :
14
Issue :
11
Database :
Directory of Open Access Journals
Journal :
Pharmaceutics
Publication Type :
Academic Journal
Accession number :
edsdoj.8f394c080e648408712321f46210db3
Document Type :
article
Full Text :
https://doi.org/10.3390/pharmaceutics14112486