Back to Search Start Over

SAR Image Classification Using Markov Random Fields with Deep Learning

Authors :
Xiangyu Yang
Xuezhi Yang
Chunju Zhang
Jun Wang
Source :
Remote Sensing, Vol 15, Iss 3, p 617 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Classification algorithms integrated with convolutional neural networks (CNN) display high accuracies in synthetic aperture radar (SAR) image classification. However, their consideration of spatial information is not comprehensive and effective, which causes poor performance in edges and complex regions. This paper proposes a Markov random field (MRF)-based algorithm for SAR image classification which fully considers the spatial constraints between superpixel regions. Firstly, the initialization of region labels is obtained by the CNN. Secondly, a probability field is constructed to improve the distribution of spatial relationships between adjacent superpixels. Thirdly, a novel region-level MRF is employed to classify the superpixels, which combines the intensity field and probability field in one framework. In our algorithm, the generation of superpixels reduces the misclassification at the pixel level, and region-level misclassification is rectified by the improvement of spatial description. Experimental results on simulated and real SAR images confirm the efficacy of the proposed algorithm for classification.

Details

Language :
English
ISSN :
20724292
Volume :
15
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.8f1e7ca8a40d42698684d9cb640e1712
Document Type :
article
Full Text :
https://doi.org/10.3390/rs15030617