Back to Search Start Over

Increased GHS-R1a expression in the hippocampus impairs memory encoding and contributes to AD-associated memory deficits

Authors :
Meng Zhang
Liu Yang
Jiajia Jia
Fenghua Xu
Shanshan Gao
Fubing Han
Mingru Deng
Jiwei Wang
Vincent Li
Ming Yu
Yuxiang Sun
Haicheng Yuan
Yu Zhou
Nan Li
Source :
Communications Biology, Vol 7, Iss 1, Pp 1-16 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Growth hormone secretagogue receptor 1a (GHS-R1a), also known as the ghrelin receptor, is an important nutrient sensor and metabolic regulator in both humans and rodents. Increased GHS-R1a expression is observed in the hippocampus of both Alzheimer’s disease (AD) patients and AD model mice. However, the causal relationship between GHS-R1a elevation in the hippocampus and AD memory deficits remains uncertain. Here, we find that increasing GHS-R1a expression in dCA1 pyramidal neurons impairs hippocampus-dependent memory formation, which is abolished by local administration of the endogenous antagonist LEAP2. GHS-R1a elevation in dCA1 pyramidal neurons suppresses excitability and blocks memory allocation in these neurons. Chemogenetic activation of those high GHS-R1a neurons during training rescues GHS-R1a overexpression-induced memory impairment. Moreover, we demonstrate that increasing GHS-R1a expression in dCA1 pyramidal neurons hampers these neurons’ ability to encode spatial memory and reduces engram size in the dCA1 region. Finally, we show that GHS-R1a deletion mitigates spatial memory deficits in APP/PS1 mice with increased GHS-R1a expression in the hippocampus. Our findings reveal a negative, causal relationship between hippocampal GHS-R1a expression and memory encoding, and suggest that blocking the abnormal increase in GHS-R1a activity/expression may be a promising approach to improve memory and treat cognitive decline in AD.

Subjects

Subjects :
Biology (General)
QH301-705.5

Details

Language :
English
ISSN :
23993642
Volume :
7
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Communications Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.8f1a02a31c864d9e9e2a446a28aa834c
Document Type :
article
Full Text :
https://doi.org/10.1038/s42003-024-06914-y