Back to Search
Start Over
On distance Laplacian spectrum of zero divisor graphs of the ring $\mathbb{Z}_{n}$
- Source :
- Karpatsʹkì Matematičnì Publìkacìï, Vol 13, Iss 1, Pp 48-57 (2021)
- Publication Year :
- 2021
- Publisher :
- Vasyl Stefanyk Precarpathian National University, 2021.
-
Abstract
- For a finite commutative ring $\mathbb{Z}_{n}$ with identity $1\neq 0$, the zero divisor graph $\Gamma(\mathbb{Z}_{n})$ is a simple connected graph having vertex set as the set of non-zero zero divisors, where two vertices $x$ and $y$ are adjacent if and only if $xy=0$. We find the distance Laplacian spectrum of the zero divisor graphs $\Gamma(\mathbb{Z}_{n})$ for different values of $n$. Also, we obtain the distance Laplacian spectrum of $\Gamma(\mathbb{Z}_{n})$ for $n=p^z$, $z\geq 2$, in terms of the Laplacian spectrum. As a consequence, we determine those $n$ for which zero divisor graph $\Gamma(\mathbb{Z}_{n})$ is distance Laplacian integral.
Details
- Language :
- English, Ukrainian
- ISSN :
- 20759827 and 23130210
- Volume :
- 13
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Karpatsʹkì Matematičnì Publìkacìï
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.8f11e48c1b4e798612407513c6d4d5
- Document Type :
- article
- Full Text :
- https://doi.org/10.15330/cmp.13.1.48-57