Back to Search Start Over

On distance Laplacian spectrum of zero divisor graphs of the ring $\mathbb{Z}_{n}$

Authors :
S. Pirzada
B.A. Rather
T.A. Chishti
Source :
Karpatsʹkì Matematičnì Publìkacìï, Vol 13, Iss 1, Pp 48-57 (2021)
Publication Year :
2021
Publisher :
Vasyl Stefanyk Precarpathian National University, 2021.

Abstract

For a finite commutative ring $\mathbb{Z}_{n}$ with identity $1\neq 0$, the zero divisor graph $\Gamma(\mathbb{Z}_{n})$ is a simple connected graph having vertex set as the set of non-zero zero divisors, where two vertices $x$ and $y$ are adjacent if and only if $xy=0$. We find the distance Laplacian spectrum of the zero divisor graphs $\Gamma(\mathbb{Z}_{n})$ for different values of $n$. Also, we obtain the distance Laplacian spectrum of $\Gamma(\mathbb{Z}_{n})$ for $n=p^z$, $z\geq 2$, in terms of the Laplacian spectrum. As a consequence, we determine those $n$ for which zero divisor graph $\Gamma(\mathbb{Z}_{n})$ is distance Laplacian integral.

Details

Language :
English, Ukrainian
ISSN :
20759827 and 23130210
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Karpatsʹkì Matematičnì Publìkacìï
Publication Type :
Academic Journal
Accession number :
edsdoj.8f11e48c1b4e798612407513c6d4d5
Document Type :
article
Full Text :
https://doi.org/10.15330/cmp.13.1.48-57