Back to Search Start Over

On the Sum of Unitary Divisors Maximum Function

Authors :
Bhabesh Das
Helen K. Saikia
Source :
AIMS Mathematics, Vol 2, Iss 1, Pp 96-101 (2017)
Publication Year :
2017
Publisher :
AIMS Press, 2017.

Abstract

It is well-known that a positive integer $d$ is called a unitary divisor of an integer $n$ if $d|n$ and gcd$\left(d,\frac{n}{d}\right)=1$. Divisor function $\sigma^{*}(n)$ denote the sum of all such unitary divisors of $n$. In this paper we consider the maximum function $U^{*}(n)=\max\{k\in\mathbb{N}:\sigma^{*}(k)|n\}$and study the function $U^{*}(n)$ for $n=p^{m}$, where $p$ is a prime and $m\geq 1$.

Details

Language :
English
ISSN :
24736988
Volume :
2
Issue :
1
Database :
Directory of Open Access Journals
Journal :
AIMS Mathematics
Publication Type :
Academic Journal
Accession number :
edsdoj.8edb47a480c344f0b2a8828671ff1b68
Document Type :
article
Full Text :
https://doi.org/10.3934/Math.2017.1.96/fulltext.html