Back to Search
Start Over
On the Sum of Unitary Divisors Maximum Function
- Source :
- AIMS Mathematics, Vol 2, Iss 1, Pp 96-101 (2017)
- Publication Year :
- 2017
- Publisher :
- AIMS Press, 2017.
-
Abstract
- It is well-known that a positive integer $d$ is called a unitary divisor of an integer $n$ if $d|n$ and gcd$\left(d,\frac{n}{d}\right)=1$. Divisor function $\sigma^{*}(n)$ denote the sum of all such unitary divisors of $n$. In this paper we consider the maximum function $U^{*}(n)=\max\{k\in\mathbb{N}:\sigma^{*}(k)|n\}$and study the function $U^{*}(n)$ for $n=p^{m}$, where $p$ is a prime and $m\geq 1$.
- Subjects :
- Unitary Divisor function
Smarandache function
Fermat prime
Mathematics
QA1-939
Subjects
Details
- Language :
- English
- ISSN :
- 24736988
- Volume :
- 2
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- AIMS Mathematics
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.8edb47a480c344f0b2a8828671ff1b68
- Document Type :
- article
- Full Text :
- https://doi.org/10.3934/Math.2017.1.96/fulltext.html