Back to Search Start Over

Effect of relative locations between internal transport barrier and qmin on HL-2M’s kink-ballooning stability

Authors :
Yuanzhen Wang
Xinliang Xu
Aiping Sun
Zhengji Li
Zhuo Wang
Yue Liu
Ziyuan Sun
Source :
AIP Advances, Vol 12, Iss 10, Pp 105318-105318-13 (2022)
Publication Year :
2022
Publisher :
AIP Publishing LLC, 2022.

Abstract

The significance of relative locations between the internal transport barrier (ITB) and the minimum value of safety factor (qmin) is proved by the magnetohydrodynamic (MHD) stability of ITB plasma, in shaped tokamak devices. In this work, equilibria of HL-2M tokamak with different locations of ITB and qmin are generated using the TOQ code, and the kink-ballooning stabilities of the equilibria with respect to 1 ≤ n ≤ 20 (n is the toroidal mode number) are simulated with the BOUT++ code. The results show that the MHD instability is suppressed magnificently, when the location of ITB is close to the core, while qmin is to the edge. The instability of the equilibrium is also stabilized when ITB is in the region with negative magnetic shear. As ITB moves toward the core or qmin moves toward the edge, the amplitude of negative magnetic shear increases, and the ITB gets closer to the negative magnetic shear, which benefits the MHD stability. Meanwhile, when qmin moves toward the edge, the elongation of the magnetic surface in the ITB region increases, and the area of the magnetic surface on the strong field side expands, which optimizes the magnetic surface distribution and improves the MHD stability.

Subjects

Subjects :
Physics
QC1-999

Details

Language :
English
ISSN :
21583226
Volume :
12
Issue :
10
Database :
Directory of Open Access Journals
Journal :
AIP Advances
Publication Type :
Academic Journal
Accession number :
edsdoj.8dd99066dd714e5bb048cfd8fd8ca445
Document Type :
article
Full Text :
https://doi.org/10.1063/5.0113311