Back to Search Start Over

Clathrin-independent entry of baculovirus triggers uptake of E. coli in non-phagocytic human cells.

Authors :
Johanna P Laakkonen
Anna R Mäkelä
Elina Kakkonen
Paula Turkki
Sari Kukkonen
Johan Peränen
Seppo Ylä-Herttuala
Kari J Airenne
Christian Oker-Blom
Maija Vihinen-Ranta
Varpu Marjomäki
Source :
PLoS ONE, Vol 4, Iss 4, p e5093 (2009)
Publication Year :
2009
Publisher :
Public Library of Science (PLoS), 2009.

Abstract

The prototype baculovirus, Autographa californica multiple nucleopolyhedrovirus, an insect pathogen, holds great potential as a gene therapy vector. To develop transductional targeting and gene delivery by baculovirus, we focused on characterizing the nature and regulation of its uptake in human cancer cells. Baculovirus entered the cells along fluid-phase markers from the raft areas into smooth-surfaced vesicles devoid of clathrin. Notably, regulators associated with macropinocytosis, namely EIPA, Pak1, Rab34, and Rac1, had no significant effect on viral transduction, and the virus did not induce fluid-phase uptake. The internalization and nuclear uptake was, however, affected by mutants of RhoA, and of Arf6, a regulator of clathrin-independent entry. Furthermore, the entry of baculovirus induced ruffle formation and triggered the uptake of fluorescent E. coli bioparticles. To conclude, baculovirus enters human cells via a clathrin-independent pathway, which is able to trigger bacterial uptake. This study increases our understanding of virus entry strategies and gives new insight into baculovirus-mediated gene delivery in human cells.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
4
Issue :
4
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.8dd46d2115214cd08eb30b874cc70bc8
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0005093