Back to Search Start Over

Co-Seismic and Postseismic Fault Models of the 2018 Mw 6.4 Hualien Earthquake Occurred in the Junction of Collision and Subduction Boundaries Offshore Eastern Taiwan

Authors :
Ying-Hui Yang
Jyr-Ching Hu
Hsin Tung
Min-Chien Tsai
Qiang Chen
Qian Xu
Yi-Jun Zhang
Jing-Jing Zhao
Guo-Xiang Liu
Jun-Nan Xiong
Ji-Yan Wang
Bing Yu
Chun-Ying Chiu
Zhe Su
Source :
Remote Sensing, Vol 10, Iss 9, p 1372 (2018)
Publication Year :
2018
Publisher :
MDPI AG, 2018.

Abstract

The ascending and descending InSAR deformations derived from ALOS-2 and Sentinel-1 satellite SAR images and GPS displacements are used to estimate the fault model of the 2018 Mw 6.4 Hualien earthquake. The sinistral strike-slip fault dipping to the west with a high dip angle of 89.4° and a rake angle of 201.7° is considered as the seismogenic fault of this event. This seismogenic fault also triggered the ruptures of the Milun fault, which dips to the east with a dip angle of ~72°, and an unknown west-dipping fault with a dip angle of 85.2°. Two predicted faulting models indicate that the InSAR deformation fields include more postseismic slip than those of the GPS data. The north segment of the Milun fault and west-dipping fault have been triggered by the rupture of the seismogenic fault, but the postseismic slip occurred only in the south segment of the Milun fault. The InSAR-derived co-seismic and postseismic faulting model suggests that the significant slip concentrates at depths of 2.4–15.0 km of the main fault, 0.0–14.0 km of the Milun fault. Only minor slip is detected on the west-dipping fault. The maximum fault slip of ca. 2.1 m is located at the depth of ca. 2.4 km under the Meilun Tableland. The Coulomb failure stress (CFS) change calculated by the co-seismic and postseismic faulting model shows that there is a significant CFS increase in the east of the south segment of the Milun fault, but few of the aftershocks occur in this area, which indicates a high risk of future seismic hazard.

Details

Language :
English
ISSN :
20724292
Volume :
10
Issue :
9
Database :
Directory of Open Access Journals
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.8d98ddf8d4c7db53ede7a7f9e4821
Document Type :
article
Full Text :
https://doi.org/10.3390/rs10091372