Back to Search
Start Over
Positively charged cytoplasmic residues in corin prevent signal peptidase cleavage and endoplasmic reticulum retention
- Source :
- Communications Biology, Vol 8, Iss 1, Pp 1-13 (2025)
- Publication Year :
- 2025
- Publisher :
- Nature Portfolio, 2025.
-
Abstract
- Abstract Positively charged residues are commonly located near the cytoplasm-membrane interface, which is known as the positive-inside rule in membrane topology. The mechanism underlying the function of these charged residues remains poorly understood. Herein, we studied the function of cytoplasmic residues in corin, a type II transmembrane serine protease in cardiovascular biology. We found that the positively charged residue at the cytoplasm-membrane interface of corin was not a primary determinant in membrane topology but probably served as a charge-repulsion mechanism in the endoplasmic reticulum (ER) to prevent interactions with proteins in the ER, including the signal peptidase. Substitution of the positively charged residue with a neutral or acidic residue resulted in corin secretion likely due to signal peptidase cleavage. In signal peptidase-deficient cells, the mutant corin proteins were not secreted but retained in the ER. Similar results were found in the low-density lipoprotein receptor and matriptase-2 that have positively charged residues at and near the cytoplasm-membrane interface. These results provide important insights into the role of the positively charged cytoplasmic residues in mammalian single-pass transmembrane proteins.
- Subjects :
- Biology (General)
QH301-705.5
Subjects
Details
- Language :
- English
- ISSN :
- 23993642
- Volume :
- 8
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Communications Biology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.8d5c7580742d4cdb8760bf9ff1d0aefa
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s42003-025-07545-7