Back to Search Start Over

Air processed Cs2AgBiBr6 lead-free double perovskite high-mobility thin-film field-effect transistors

Authors :
Gnanasampanthan Abiram
Fatemeh Heidari Gourji
Selvakumar Pitchaiya
Punniamoorthy Ravirajan
Thanihaichelvan Murugathas
Dhayalan Velauthapillai
Source :
Scientific Reports, Vol 12, Iss 1, Pp 1-8 (2022)
Publication Year :
2022
Publisher :
Nature Portfolio, 2022.

Abstract

Abstract This study focuses on the fabrication and characterization of Cs2AgBiBr6 double perovskite thin film for field-effect transistor (FET) applications. The Cs2AgBiBr6 thin films were fabricated using a solution process technique and the observed XRD patterns demonstrate no diffraction peaks of secondary phases, which confirm the phase-pure crystalline nature. The average grain sizes of the spin-deposited film were also calculated by analysing the statistics of grain size in the SEM image and was found to be around 412 (± 44) nm, and larger grain size was also confirmed by the XRD measurements. FETs with different channel lengths of Cs2AgBiBr6 thin films were fabricated, under ambient conditions, on heavily doped p-type Si substrate with a 300 nm thermally grown SiO2 dielectric. The fabricated Cs2AgBiBr6 FETs showed a p-type nature with a positive threshold voltage. The on-current, threshold voltage and hole-mobility of the FETs decreased with increasing channel length. A high average hole mobility of 0.29 cm2 s−1 V−1 was obtained for the FETs with a channel length of 30 µm, and the hole-mobility was reduced by an order of magnitude (0.012 cm2 s−1 V−1) when the channel length was doubled. The on-current and hole-mobility of Cs2AgBiBr6 FETs followed a power fit, which confirmed the dominance of channel length in electrostatic gating in Cs2AgBiBr6 FETs. A very high-hole mobility observed in FET could be attributed to the much larger grain size of the Cs2AgBiBr6 film made in this work.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
12
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.8cc23663a3554647919973bab3a09f5e
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-022-06319-z