Back to Search
Start Over
Antibody Treatment of Ebola and Sudan Virus Infection via a Uniquely Exposed Epitope within the Glycoprotein Receptor-Binding Site
- Source :
- Cell Reports, Vol 15, Iss 7, Pp 1514-1526 (2016)
- Publication Year :
- 2016
- Publisher :
- Elsevier, 2016.
-
Abstract
- Summary: Previous efforts to identify cross-neutralizing antibodies to the receptor-binding site (RBS) of ebolavirus glycoproteins have been unsuccessful, largely because the RBS is occluded on the viral surface. We report a monoclonal antibody (FVM04) that targets a uniquely exposed epitope within the RBS; cross-neutralizes Ebola (EBOV), Sudan (SUDV), and, to a lesser extent, Bundibugyo viruses; and shows protection against EBOV and SUDV in mice and guinea pigs. The antibody cocktail ZMapp™ is remarkably effective against EBOV (Zaire) but does not cross-neutralize other ebolaviruses. By replacing one of the ZMapp™ components with FVM04, we retained the anti-EBOV efficacy while extending the breadth of protection to SUDV, thereby generating a cross-protective antibody cocktail. In addition, we report several mutations at the base of the ebolavirus glycoprotein that enhance the binding of FVM04 and other cross-reactive antibodies. These findings have important implications for pan-ebolavirus vaccine development and defining broadly protective antibody cocktails. : Howell et al. examine a mAb, FVM04, that binds the ebolavirus receptor-binding site and find that FVM04 protects against EBOV and SUDV. When combined with two ZMapp™ components, the antibody cocktail retains EBOV protection similar to that of ZMapp™ and extends protection against SUDV. Specific glycoprotein mutations that enhance the exposure of cross-neutralizing epitopes are described.
- Subjects :
- Biology (General)
QH301-705.5
Subjects
Details
- Language :
- English
- ISSN :
- 22111247
- Volume :
- 15
- Issue :
- 7
- Database :
- Directory of Open Access Journals
- Journal :
- Cell Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.8cb2b4542b0546a695db88b408e10d26
- Document Type :
- article
- Full Text :
- https://doi.org/10.1016/j.celrep.2016.04.026