Back to Search Start Over

Monovalent metal ion binding promotes the first transesterification reaction in the spliceosome

Authors :
Jana Aupič
Jure Borišek
Sebastian M. Fica
Wojciech P. Galej
Alessandra Magistrato
Source :
Nature Communications, Vol 14, Iss 1, Pp 1-10 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Cleavage and formation of phosphodiester bonds in nucleic acids is accomplished by large cellular machineries composed of both protein and RNA. Long thought to rely on a two-metal-ion mechanism for catalysis, structure comparisons revealed many contain highly spatially conserved second-shell monovalent cations, whose precise function remains elusive. A recent high-resolution structure of the spliceosome, essential for pre-mRNA splicing in eukaryotes, revealed a potassium ion in the active site. Here, we employ biased quantum mechanics/ molecular mechanics molecular dynamics to elucidate the function of this monovalent ion in splicing. We discover that the K+ ion regulates the kinetics and thermodynamics of the first splicing step by rigidifying the active site and stabilizing the substrate in the pre- and post-catalytic state via formation of key hydrogen bonds. Our work supports a direct role for the K+ ion during catalysis and provides a mechanistic hypothesis likely shared by other nucleic acid processing enzymes.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.8c92db1cfc32494abf4d164c064a5e6a
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-023-44174-2