Back to Search Start Over

Inferred retinal sensitivity in recessive Stargardt disease using machine learning

Authors :
Philipp L. Müller
Alexandru Odainic
Tim Treis
Philipp Herrmann
Adnan Tufail
Frank G. Holz
Maximilian Pfau
Source :
Scientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

Abstract Spatially-resolved retinal function can be measured by psychophysical testing like fundus-controlled perimetry (FCP or ‘microperimetry’). It may serve as a performance outcome measure in emerging interventional clinical trials for macular diseases as requested by regulatory agencies. As FCP constitute laborious examinations, we have evaluated a machine-learning-based approach to predict spatially-resolved retinal function (’inferred sensitivity’) based on microstructural imaging (obtained by spectral domain optical coherence tomography) and patient data in recessive Stargardt disease. Using nested cross-validation, prediction accuracies of (mean absolute error, MAE [95% CI]) 4.74 dB [4.48–4.99] were achieved. After additional inclusion of limited FCP data, the latter reached 3.89 dB [3.67–4.10] comparable to the test–retest MAE estimate of 3.51 dB [3.11–3.91]. Analysis of the permutation importance revealed, that the IS&OS and RPE thickness were the most important features for the prediction of retinal sensitivity. ’Inferred sensitivity’, herein, enables to accurately estimate differential effects of retinal microstructure on spatially-resolved function in Stargardt disease, and might be used as quasi-functional surrogate marker for a refined and time-efficient investigation of possible functionally relevant treatment effects or disease progression.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
11
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.8c11343c1f63442ba53d909e99b0358f
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-020-80766-4