Back to Search Start Over

Real-time prediction of bladder urine leakage using fuzzy inference system and dual Kalman filtering in cats

Authors :
Amirhossein Qasemi
Alireza Aminian
Abbas Erfanian
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-18 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract The use of electrical stimulation devices to manage bladder incontinence relies on the application of continuous inhibitory stimulation. However, continuous stimulation can result in tissue fatigue and increased delivered charge. Here, we employ a real-time algorithm to provide a short-time prediction of urine leakage using the high-resolution power spectrum of the bladder pressure during the presence of non-voiding contractions (NVC) in normal and overactive bladder (OAB) cats. The proposed method is threshold-free and does not require pre-training. The analysis revealed that there is a significant difference between voiding contraction (VC) and NVC pressures as well as band powers (0.5–5 Hz) during both normal and OAB conditions. Also, most of the first leakage points occurred after the maximum VC pressure, while all of them were observed subsequent to the maximum VC spectral power. Kalman-Fuzzy method predicted urine leakage on average 2.2 s and 1.6 s before its occurrence and an average of 2.0 s and 1.1 s after the contraction started with success rates of 94.2% and 100% in normal and OAB cats, respectively. This work presents a promising approach for developing a neuroprosthesis device, with on-demand stimulation to control bladder incontinence.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.8c0c41762cf4952922781a0a427048f
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-53629-5