Back to Search Start Over

User-Independent Motion State Recognition Using Smartphone Sensors

Authors :
Fuqiang Gu
Allison Kealy
Kourosh Khoshelham
Jianga Shang
Source :
Sensors, Vol 15, Iss 12, Pp 30636-30652 (2015)
Publication Year :
2015
Publisher :
MDPI AG, 2015.

Abstract

The recognition of locomotion activities (e.g., walking, running, still) is important for a wide range of applications like indoor positioning, navigation, location-based services, and health monitoring. Recently, there has been a growing interest in activity recognition using accelerometer data. However, when utilizing only acceleration-based features, it is difficult to differentiate varying vertical motion states from horizontal motion states especially when conducting user-independent classification. In this paper, we also make use of the newly emerging barometer built in modern smartphones, and propose a novel feature called pressure derivative from the barometer readings for user motion state recognition, which is proven to be effective for distinguishing vertical motion states and does not depend on specific users’ data. Seven types of motion states are defined and six commonly-used classifiers are compared. In addition, we utilize the motion state history and the characteristics of people’s motion to improve the classification accuracies of those classifiers. Experimental results show that by using the historical information and human’s motion characteristics, we can achieve user-independent motion state classification with an accuracy of up to 90.7%. In addition, we analyze the influence of the window size and smartphone pose on the accuracy.

Details

Language :
English
ISSN :
14248220
Volume :
15
Issue :
12
Database :
Directory of Open Access Journals
Journal :
Sensors
Publication Type :
Academic Journal
Accession number :
edsdoj.8bd02a166bb8461292922d2a50939fb8
Document Type :
article
Full Text :
https://doi.org/10.3390/s151229821