Back to Search Start Over

Tree2C: A Flexible Tool for Enabling Model Deployment with Special Focus on Cheminformatics Applications

Authors :
Alessandro Pedretti
Angelica Mazzolari
Silvia Gervasoni
Giulio Vistoli
Source :
Applied Sciences, Vol 10, Iss 21, p 7704 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

Despite the increasing role played by artificial intelligence methods (AI) in pharmaceutical sciences, model deployment remains an issue, which only can be addressed with great difficulty. This leads to a marked discrepancy between the number of published predictive studies based on AI methods and the models, which can be used for new predictions by everyone. On these grounds, the present paper describes the Tree2C tool which automatically translates a tree-based predictive model into a source code with a view to easily generating applications which can run as a standalone software or can be inserted into an online web service. Moreover, the Tree2C tool is implemented within the VEGA environment and the generated program can include the source code to calculate the required attributes/descriptors. Tree2C supports various programming languages (i.e., C/C++, Fortran 90, Java, JavaScript, JScript, Lua, PHP, Python, REBOL and VBScript and C-Script). Along with a detailed description of the major features of this tool, the paper also describes two examples which are aimed to predict the blood–brain barrier (BBB) permeation as well as the mutagenicity. They permit a clear evaluation of the potentials of Tree2C and of its related features as implemented by the VEGA suite of programs. The Tree2C tool is available for free.

Details

Language :
English
ISSN :
20763417
Volume :
10
Issue :
21
Database :
Directory of Open Access Journals
Journal :
Applied Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.8b9baec33394bfab419e1a5582ce8d9
Document Type :
article
Full Text :
https://doi.org/10.3390/app10217704