Back to Search
Start Over
MAP kinase phosphatase-2 plays a critical role in response to infection by Leishmania mexicana.
- Source :
- PLoS Pathogens, Vol 6, Iss 11, p e1001192 (2010)
- Publication Year :
- 2010
- Publisher :
- Public Library of Science (PLoS), 2010.
-
Abstract
- In this study we generated a novel dual specific phosphatase 4 (DUSP4) deletion mouse using a targeted deletion strategy in order to examine the role of MAP kinase phosphatase-2 (MKP-2) in immune responses. Lipopolysaccharide (LPS) induced a rapid, time and concentration-dependent increase in MKP-2 protein expression in bone marrow-derived macrophages from MKP-2(+/+) but not from MKP-2(-/-) mice. LPS-induced JNK and p38 MAP kinase phosphorylation was significantly increased and prolonged in MKP-2(-/-) macrophages whilst ERK phosphorylation was unaffected. MKP-2 deletion also potentiated LPS-stimulated induction of the inflammatory cytokines, IL-6, IL-12p40, TNF-α, and also COX-2 derived PGE(2) production. However surprisingly, in MKP-2(-/-) macrophages, there was a marked reduction in LPS or IFNγ-induced iNOS and nitric oxide release and enhanced basal expression of arginase-1, suggesting that MKP-2 may have an additional regulatory function significant in pathogen-mediated immunity. Indeed, following infection with the intracellular parasite Leishmania mexicana, MKP-2(-/-) mice displayed increased lesion size and parasite burden, and a significantly modified Th1/Th2 bias compared with wild-type counterparts. However, there was no intrinsic defect in MKP-2(-/-) T cell function as measured by anti-CD3 induced IFN-γ production. Rather, MKP-2(-/-) bone marrow-derived macrophages were found to be inherently more susceptible to infection with Leishmania mexicana, an effect reversed following treatment with the arginase inhibitor nor-NOHA. These findings show for the first time a role for MKP-2 in vivo and demonstrate that MKP-2 may be essential in orchestrating protection against intracellular infection at the level of the macrophage.
- Subjects :
- Immunologic diseases. Allergy
RC581-607
Biology (General)
QH301-705.5
Subjects
Details
- Language :
- English
- ISSN :
- 15537366 and 15537374
- Volume :
- 6
- Issue :
- 11
- Database :
- Directory of Open Access Journals
- Journal :
- PLoS Pathogens
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.8b370344e4b845929912de640584ece4
- Document Type :
- article
- Full Text :
- https://doi.org/10.1371/journal.ppat.1001192