Back to Search Start Over

Energy and exergy analyses of a hybrid small modular reactor and wind turbine system for trigeneration

Authors :
Farrukh Khalid
Yusuf Bicer
Source :
Energy Science & Engineering, Vol 7, Iss 6, Pp 2336-2350 (2019)
Publication Year :
2019
Publisher :
Wiley, 2019.

Abstract

Abstract In this study, authors present a new hybrid nuclear small modular reactor system assisted with wind energy for net zero emissions trigeneration system. Small modular reactors bring multiple advantages including (a) improved thermal efficiency, (b) better building efficiency due to modularity, and (c) less operation and maintenance costs compared to standard nuclear power generation. Furthermore, the greenhouse gas emissions from small modular reactors are lower than regular counterparts. This study hybridizes small modular reactors with wind turbines for producing three useful commodities, namely electricity, hydrogen, and hot water. A two‐step high‐temperature thermochemical cycle (based on hydrogen chloride gas) is used for hydrogen production, and its performance in terms of energy and exergy efficiencies is evaluated. Additionally, the exergy and energy analyses (by writing balance equations for each component of the system) are carried out to determine the thermodynamic feasibility of the proposed system. In order to observe the effects of various parameters such as the temperature of the thermochemical cycle steps, inlet gas turbine temperature, the pressure ratio of the gas turbine, actual wind speed, and current density on the system performance, a detailed parametric study is conducted. The results of this study show that the overall system can achieve an energy efficiency of about 57.5% and exergy efficiency of about 38.1%.

Details

Language :
English
ISSN :
20500505
Volume :
7
Issue :
6
Database :
Directory of Open Access Journals
Journal :
Energy Science & Engineering
Publication Type :
Academic Journal
Accession number :
edsdoj.8acc0ff72eb48ea80e425b2df4ceaee
Document Type :
article
Full Text :
https://doi.org/10.1002/ese3.327