Back to Search Start Over

5-Dodecanolide, a Compound Isolated from Pig Lard, Presents Powerful Anti-Inflammatory Properties

Authors :
Xavier Capó
Miquel Martorell
Josep A. Tur
Antoni Sureda
Antoni Pons
Source :
Molecules, Vol 26, Iss 23, p 7363 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Background: Pork lard (PL) is traditionally used as an anti-inflammatory agent. We propose to demonstrate the anti-inflammatory properties of PL, and elucidate which compounds could be responsible for the anti-inflammatory effects. Methods: The anti-inflammatory effects of PL were tested in a rat model of zymosan-induced hind paw inflammation. Further, the hydroalcoholic extract from PL was obtained, the composition analyzed, and the anti-inflammatory activity of the extracts and isolated components assayed using immune cells stimulated with lipopolysaccharide (LPS). Results: Applying the ointment on the inflamed rat feet reduced the foot diameter, foot weight, and activities of antioxidant enzymes and inflammatory markers of circulating neutrophils. The main components of the hydroalcoholic extract were 5-dodecanolide, oleamide, hexadecanoic acid, 9-octadecenoic acid, hexadecanamide, and resolvin D1. Conclusions: PL reduces the immune response in an animal model stimulated with zymosan. Hydroalcoholic PL extract and its components (5-Dodecanolide, Oleamide, and Resolvin D1) exerted an anti-inflammatory effect on LPS-stimulated neutrophils and peripheral mononuclear cells reducing the capability to produce TNFα, as well as the activities of antioxidant and pro-inflammatory enzymes. These effects are attributable to 5-dodecanolide, although the effects of this compound alone do not reach the magnitude of the anti-inflammatory effects observed by the complete hydroalcoholic extract.

Details

Language :
English
ISSN :
14203049
Volume :
26
Issue :
23
Database :
Directory of Open Access Journals
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
edsdoj.8a8aba6513cf45bcb407947a151f4c27
Document Type :
article
Full Text :
https://doi.org/10.3390/molecules26237363