Back to Search Start Over

Novel Wolbachia strains in Anopheles malaria vectors from Sub-Saharan Africa [version 2; referees: 2 approved, 1 approved with reservations]

Authors :
Claire L. Jeffries
Gena G. Lawrence
George Golovko
Mojca Kristan
James Orsborne
Kirstin Spence
Eliot Hurn
Janvier Bandibabone
Luciano M. Tantely
Fara N. Raharimalala
Kalil Keita
Denka Camara
Yaya Barry
Francis Wat’senga
Emile Z. Manzambi
Yaw A. Afrane
Abdul R. Mohammed
Tarekegn A. Abeku
Shivanand Hedge
Kamil Khanipov
Maria Pimenova
Yuriy Fofanov
Sebastien Boyer
Seth R. Irish
Grant L. Hughes
Thomas Walker
Source :
Wellcome Open Research, Vol 3 (2018)
Publication Year :
2018
Publisher :
Wellcome, 2018.

Abstract

Background: Wolbachia, a common insect endosymbiotic bacterium that can influence pathogen transmission and manipulate host reproduction, has historically been considered absent from the Anopheles (An.) genera, but has recently been found in An. gambiae s.l. populations in West Africa. As there are numerous Anopheles species that have the capacity to transmit malaria, we analysed a range of species across five malaria endemic countries to determine Wolbachia prevalence rates, characterise novel Wolbachia strains and determine any correlation between the presence of Plasmodium, Wolbachia and the competing bacterium Asaia. Methods: Anopheles adult mosquitoes were collected from five malaria-endemic countries: Guinea, Democratic Republic of the Congo (DRC), Ghana, Uganda and Madagascar, between 2013 and 2017. Molecular analysis was undertaken using quantitative PCR, Sanger sequencing, Wolbachia multilocus sequence typing (MLST) and high-throughput amplicon sequencing of the bacterial 16S rRNA gene. Results: Novel Wolbachia strains were discovered in five species: An. coluzzii, An. gambiae s.s., An. arabiensis, An. moucheti and An. species A, increasing the number of Anopheles species known to be naturally infected. Variable prevalence rates in different locations were observed and novel strains were phylogenetically diverse, clustering with Wolbachia supergroup B strains. We also provide evidence for resident strain variants within An. species A. Wolbachia is the dominant member of the microbiome in An. moucheti and An. species A but present at lower densities in An. coluzzii. Interestingly, no evidence of Wolbachia/Asaia co-infections was seen and Asaia infection densities were shown to be variable and location dependent. Conclusions: The important discovery of novel Wolbachia strains in Anopheles provides greater insight into the prevalence of resident Wolbachia strains in diverse malaria vectors. Novel Wolbachia strains (particularly high-density strains) are ideal candidate strains for transinfection to create stable infections in other Anopheles mosquito species, which could be used for population replacement or suppression control strategies.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
2398502X
Volume :
3
Database :
Directory of Open Access Journals
Journal :
Wellcome Open Research
Publication Type :
Academic Journal
Accession number :
edsdoj.8a6fff8b6930411fb4f2738a84b79675
Document Type :
article
Full Text :
https://doi.org/10.12688/wellcomeopenres.14765.2