Back to Search Start Over

Glial Cell Dysfunction in C9orf72-Related Amyotrophic Lateral Sclerosis and Frontotemporal Dementia

Authors :
Mehdi Ghasemi
Kiandokht Keyhanian
Catherine Douthwright
Source :
Cells, Vol 10, Iss 2, p 249 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Since the discovery of the chromosome 9 open reading frame 72 (C9orf72) repeat expansion mutation in 2011 as the most common genetic abnormality in amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig’s disease) and frontotemporal dementia (FTD), progress in understanding the signaling pathways related to this mutation can only be described as intriguing. Two major theories have been suggested—(i) loss of function or haploinsufficiency and (ii) toxic gain of function from either C9orf72 repeat RNA or dipeptide repeat proteins (DPRs) generated from repeat-associated non-ATG (RAN) translation. Each theory has provided various signaling pathways that potentially participate in the disease progression. Dysregulation of the immune system, particularly glial cell dysfunction (mainly microglia and astrocytes), is demonstrated to play a pivotal role in both loss and gain of function theories of C9orf72 pathogenesis. In this review, we discuss the pathogenic roles of glial cells in C9orf72 ALS/FTD as evidenced by pre-clinical and clinical studies showing the presence of gliosis in C9orf72 ALS/FTD, pathologic hallmarks in glial cells, including TAR DNA-binding protein 43 (TDP-43) and p62 aggregates, and toxicity of C9orf72 glial cells. A better understanding of these pathways can provide new insights into the development of therapies targeting glial cell abnormalities in C9orf72 ALS/FTD.

Details

Language :
English
ISSN :
20734409
Volume :
10
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Cells
Publication Type :
Academic Journal
Accession number :
edsdoj.8a002479f86d4af393ef6712ef3e0c32
Document Type :
article
Full Text :
https://doi.org/10.3390/cells10020249